Eulerian–Lagrangian modeling of turbulent liquid–solid slurries in horizontal pipes

نویسندگان

  • Jesse Capecelatro
  • Olivier Desjardins
چکیده

Computations of liquid–solid slurries in horizontal pipes are performed to investigate the complex multiphase flow dynamics associated with operating conditions above and below the critical deposition velocity. A high-fidelity large eddy simulation framework is combined with a Lagrangian particle tracking solver to account for polydispersed settling particles in a fully developed turbulent flow. The two phases are fully coupled via volume fraction and momentum exchange terms, and a two-step filtering process is employed to alleviate any dependence of the liquid-phase mesh size on the particle diameter, enabling the capture of a wide range of spatial turbulent scales. A fully conservative immersed boundary method is employed to account for the pipe geometry on a uniform Cartesian mesh. Two cases are simulated, each with a pipe geometry and particle size distribution matching an experimental study from Roco & Balakrishnam, which considers a mean volumetric solid concentration of 8.4%, corresponding to just over 16 million particles. The first case considers a Reynolds number based on the bulk flow of the liquid of 85,000, resulting in a heterogeneous suspension of particles throughout the pipe cross-section. Statistics on the concentration and velocity of the particle phase for this case show excellent agreement with experimental results. The second case considers a lower Reynolds number of 42,660, leading to the formation of a stationary bed of particles. Three distinct regions are identified in the second case, corresponding to a rigid bed at the bottom of the pipe, a highly-collisional shear flow just above the bed, and a dilute suspension of particles far from the bed. Computational results indicate segregation in particle size along the vertical direction, with the smallest particles located at the top, increasing monotonically until the bed surface, where the largest particles are located. The covariance of concentration and velocity of each phase is presented, giving further insight on the multiphase dynamics. Statistics on the individual mechanisms that contribute to the motion of each particle, namely forces due to drag, the pressure gradient and viscous stresses of the surrounding fluid, and collisions, are provided for each case. It is observed that for the majority of the pipe cross-section, the drag force dominates for each case, which is balanced by inter-particle collisions in the streamwise direction, and by gravity in the vertical direction. Simulation results are also used to investigate closures from Reynolds average modeling of multiphase flows. ! 2013 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Theory Based CFD Modeling of Particulate Flows in Horizontal Pipes

The numerical simulation of fully developed gas–solid flow in a horizontal pipe is done using the eulerian-eulerian approach, also known as two fluids modeling as both phases are treated as continuum and inter-penetrating continua. The solid phase stresses are modeled using kinetic theory of granular flow (KTGF). The computed results for velocity profiles and pressure drop are compared with the...

متن کامل

Computational Fluid Dynamics Modeling of Downward Bubbly Flows

Downward turbulent bubbly flows in pipes were modeled using computational fluid dynamics tools. The Hydrodynamics, phase distribution and turbulent structure of twophase air-water flow in a 57.15 mm diameter and 3.06 m length vertical pipe was modeled by using the 3-D Eulerian-Eulerian multiphase flow approach. Void fraction, liquid velocity and turbulent fluctuations profiles were calculated a...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

Relationship between Eulerian and Lagrangian Statistics in the Study of Atmospheric Dispersion in the Convective Boundary Layer: a Large-eddy Simulation Study

Atmospheric dispersion is a topic of great importance especially in relation to pollutant transport. Two different approaches, known as the Eulerian and the Lagrangian frameworks, are used to describe this process. In the Eulerian framework, statistical properties are calculated in a fixed reference frame. This approach is most commonly used in field experiments as well as in laboratory experim...

متن کامل

Coupled Eulerian-Lagrangian (CEL) Modeling of Material Flow in Dissimilar Friction Stir Welding of Aluminum Alloys

In this work, the finite element simulation of dissimilar friction stir welding process is investigated. The welded materials are AA 6061-T6 and AA 7075-T6 aluminum alloys. For this purpose, a 3D coupled thermo-mechanical finite element model is developed according to the Coupled Eulerian-Lagrangian (CEL) method. The CEL method has the advantages of both Lagrangian and Eulerian approaches, whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013